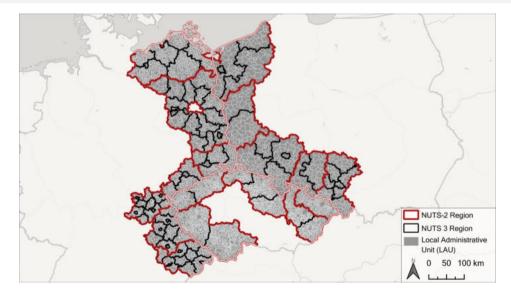
EU Cohesion Policy on the Ground: Analyzing Small-Scale Effects Using Satellite Data

Julia Bachtrögler-Unger, Mathias Dolls, **Carla Krolage**, Paul Schüle, Hannes Taubenböck & Matthias Weigand

> AK Strukturpolitik Düsseldorf, 26.04.2024

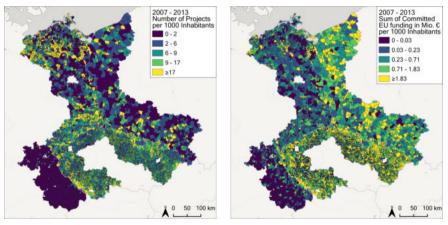


What are the small-scale effects of the EU's cohesion policy, and which types of funding have stronger or weaker local effects?

- Lack of consensus and clear-cut empirical evidence on the effectiveness of cohesion policy
 - Most evaluation literature on the level of NUTS-2 (or NUTS-3) regions
 - Most papers report positive association between funding and growth, others insignificant or negative effects (Dall'Erba and Fang, 2017)
 - Few studies studying economic effects of EU cohesion policy at the municipality level for single countries (Cerqa and Pellegrini 2018, Mayerhofer et al. 2020)
- Lack of more granular data on both funding and outcome variables

- Employ a novel approach for analyzing the effects of EU cohesion policy on local economic activity
- Link comprehensive project-level EU funding database with satellite imagery
- > Exploit the potential of remote sensing data at spatially granular level
- Assess effects for sample region of municipalities in the border regions in the Czech Republic, Germany, and Poland
- Spatial granularity allows analyzing spillovers and heterogeneity by project types

Overview of the Sample Region - NUTS-2/3 and LAU


Data on EU Funding

- Dataset of projects co-funded by the European Regional Development Fund (ERDF) and the Cohesion Fund
- Programming period 2007-13
 - Source: lists of beneficiaries published by managing authorities, KEEP database for INTERREG projects
 - Geo-location of projects according to project (or beneficiary) postcode(s) or city name(s)
 - Spatial matching of postcodes and LAU
- Total: 119,000 projects in 6571 municipalities

Distribution of EU Funding Across Municipalities

- On average, 17 projects per LAU
- Average funding per project: 260,000 Euro (median: 50,000 Euro)
- Thematic distribution varies across countries

Distribution of Funding: Number of Projects and Sum of Committed EU Funding per 1000 Inhabitants

(a) Number of projects

(b) Sum of committed funding

- Growing literature on how remote sensing data can be used to evaluate place-based economic policies (e.g., Davidson and Storeygard 2016) and proxy urban and regional economic development (e.g., Wu and Wang 2019, Zhu et al. 2017, Lessmann and Seidel 2017)
- Calibration and preprocessing of multi-temporal, large scale satellite data
- Aggregation of spatial database of satellite data as a proxy for economic development
- Spatial reference unit LAU: full integration into project database

Myzków, PL

100

0

200 m

Myzków, PL

Myzków, PL

Estimation Strategy: Regional Funds and Economic Performance

- ► Target variable: Nighttime light emission (NLE) as proxy for economic activity
- Ideal experiment: Randomly allocate funds to municipalities in t₀ and compare growth rates in t₁
- Here: Compare growth rates of municipalities *i within* a NUTS-3 (or NUTS-2) region *j* which received more or less funds, conditional on observables
 - Controls include initial night light emissions, land cover, population
 - Funding: inverse hyperbolic sine transformation, given the highly skewed distribution of funding

$$\Delta NLE_{i,j} = \beta_0 + \beta_1 Funding_{i,j} + \beta_2 X_{i,j} + \phi_j + \varepsilon_{i,j}$$

Positive Association between Funding and Night Light Growth, 2007-2013

	$\stackrel{(1)}{\Delta NLE}$	(2) ∆NLE
Funding Amount	0.00745*** (4.38)	0.00334** (3.03)
$log(NLE_{2007})$	-0.0694*** (-4.46)	-0.184*** (-5.89)
Share Urban ₂₀₀₇		-0.278*** (-5.49)
Share Cropland $_{2007}$		-0.136*** (-5.08)
$\log(Population)$		0.126*** (5.95)
NUTS-3 FE Observations	√ 6555	√ 6555

For an average municipality receiving 625,500 Euro of annual funding, total nightlight emissions increase by 0.05%

Functional specifications:

- Results robust to various functional specifications
- Significantly positive effects also for funding amount in million Euros, number of projects, ...

Intensive vs extensive margin:

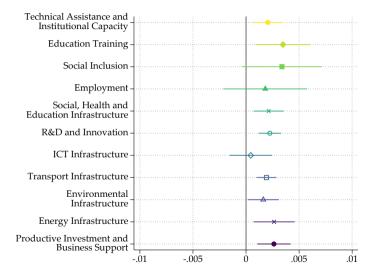
Larger estimates when only focusing on municipalities receiving funding

Pre-trends and selection effects:

Placebo tests and pre-trends show no significantly higher impact in preceding periods

Distinction between Temporary and Permanent Effects

- Effects may be partly driven by ongoing construction work vs. impact of finished projects
- Solution:
 - Separate estimations for projects ending prior to 2013 vs. projects still ongoing in 2013
 - Analysis for subset of projects receiving funding in first half of MFF
- Results indicate a strong persistent effect of funding after project completion


Temporary vs. Permanent Effects

	Finished before 2013		Ongoing	Ongoing in 2013		Funded in 2007-2009	
	(1) ΔNLE	(2) ∆NLE	(3) ∆ <i>NLE</i>	$(4) \\ \Delta NLE$	(5) ∆ <i>NLE</i>	$(6) \\ \Delta NLE$	
Funding Amount	0.00319** (2.86)	0.00237* (2.37)	0.00324** (3.25)	0.00210* (2.43)	0.00662*** (4.97)	0.00301*** (3.98)	
$\log(NLE_{2007})$	-0.0573*** (-3.96)	-0.182*** (-5.88)	-0.0568*** (-3.94)	-0.182*** (-5.87)	-0.0669*** (-4.34)	-0.184*** (-5.89)	
Share Urban ₂₀₀₇		-0.283*** (-5.55)		-0.282*** (-5.51)		-0.277*** (-5.51)	
Share Cropland $_{2007}$		-0.138*** (-5.06)		-0.138*** (-5.04)		-0.136*** (-5.03)	
log(Population)		0.130*** (6.08)		0.130*** (6.07)		0.126*** (5.99)	
NUTS-3 FE Observations	√ 6555	√ 6555	√ 6555	√ 6555	√ 6555	√ 6555	

Positive Spatial Spillovers to Neighboring Municipalities

	$^{(1)}_{\Delta NLE}$	(2) ∆NLE
Funding Amount	0.00696*** (4.50)	0.00290** (2.80)
Funding Amount in Neighbouring Municipalities	0.00371 (1.68)	0.00433* (2.37)
Funding Amount Neighbours of Neighbours	0.00575* (2.23)	0.00368* (1.99)
$log(NLE_{2007})$	-0.0738*** (-4.49)	-0.189*** (-5.91)
Share Urban ₂₀₀₇		-0.279*** (-5.67)
Share Cropland ₂₀₀₇		-0.133*** (-5.17)
log(Population)		0.126*** (5.92)
NUTS-3 FE Observations	√ 6551	√ 6551

Effects are Heterogeneous across Funding Categories

Summary

Contributions of this study

- Novel approach of estimating the local effects of EU cohesion policy by combining project-level data with satellite imagery
- Documentation and analysis of the spatial distribution of EU structural and cohesion funding at the level of municipalities
- Findings confirm positive and significant relationship between EU funding and local economic activity
- Remote-sensing data can be effectively used to capture small-scale effects of place-based policies
- Approach could be applied to other contexts, such as Next Generation EU investment projects

Thank you!

carla.krolage@ur.de